Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression

نویسندگان

  • Cherry Yin-Yi Chang
  • Ming-Tsung Lai
  • Yi Chen
  • Ching-Wen Yang
  • Hui-Wen Chang
  • Cheng-Chan Lu
  • Chih-Mei Chen
  • Carmen Chan
  • Ching Chung
  • Chun-Cheng Tseng
  • Tritium Hwang
  • Jim Jinn-Chyuan Sheu
  • Fuu-Jen Tsai
چکیده

Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bmi1 promotes erythroid development through regulating ribosome biogenesis.

While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered tha...

متن کامل

Genetic Variation Shapes Protein Networks Mainly through Non-transcriptional Mechanisms

Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identifi...

متن کامل

Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response.

Ribosome biogenesis has been associated with regulation of cell growth and cell division, but the molecular mechanisms that integrate the effect of ribosome biogenesis on these processes in mammalian cells remain unknown. To study the effect of impaired ribosome functions in vivo, we conditionally deleted one or two alleles of the 40S ribosomal protein S6 gene in T cells in the mouse. While com...

متن کامل

P-199: Genetic Variation Analysis of MIF in Endometriosis Patients

Background: Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine that is secreted by active macrophages accumulated in ectopic tissue of endometriosis. It involves in pathophysiological events of endometriosis such as angiogenesis, cell proliferation and it can stimulate the synthesis of PGE2 that are necessary for survival and establishment of ectopic endometriosis t...

متن کامل

Regulation of ribosome biogenesis by nucleostemin 3 promotes local and systemic growth in Drosophila.

Nucleostemin 3 (NS3) is an evolutionarily conserved protein with profound roles in cell growth and viability. Here we analyze cell-autonomous and non-cell-autonomous growth control roles of NS3 in Drosophila and demonstrate its GTPase activity using genetic and biochemical assays. Two null alleles of ns3, and RNAi, demonstrate the necessity of NS3 for cell autonomous growth. A hypomorphic allel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016